
Page 1 of 7

Implementing DevOps-at-Scale within
the Federal Government

5 Important steps and CIO takeaways in making DevOps a scalable
endeavour within the government.

Page 2 of 7

DevOps is a set of practices that combines software development (Dev) and IT
operations (Ops). It aims to shorten the development lifecycle and provide continuous
delivery and deployment of software. Here are some steps you can take to implement
DevOps at scale in your organization:

Step 1: Build a culture of collaboration

Building a culture of collaboration is essential for successful DevOps. DevOps relies on
close collaboration between development and operations teams, and effective
communication and teamwork are key to its success. Here are some ways you can build
a culture of collaboration in your organization:

1. Encourage cross-functional teamwork: Encourage development and operations
teams to work together, share knowledge, and communicate regularly. This can
be achieved through practices like pair programming, code reviews, and daily
stand-ups.

2. Foster a culture of continuous learning: Encourage your teams to stay up to date

with the latest tools and techniques. This can be achieved through training
programs, hackathons, and knowledge-sharing sessions.

3. Emphasize the importance of collaboration: Make it clear that collaboration is a

key part of your organization's culture. This can be achieved through incentives,
recognition programs, and leadership support.

4. Encourage open communication: Encourage open and transparent

communication across your organization. This can be achieved through practices
like open office hours, regular team meetings, and company-wide
communication channels.

5. Identify key senior manager to be sponsors or champion for collaboration. Show
and tell success stories of awesome collaborators within your organization.

6. Staff a dedicated organizational change management expert to develop and
implement a successful DevOps adoption strategy.

CIO Action: Mandate an executive with an action plan to implement
DevOps as a standard practice within the organization

Page 3 of 7

Step 2: Automate repetitive tasks
Automation can help your teams work faster and more efficiently. Automating
repetitive tasks can be a key component of a successful DevOps workflow. Automation
can help your teams work faster and more efficiently by taking care of routine tasks,
such as code deployment, testing, and infrastructure management.

There are many tools available for automating DevOps tasks, including:

1. Jenkins: an open-source automation server that helps you automate parts of the
software development process.

2. Puppet: an automation tool that helps you manage your infrastructure as code.

You can use Puppet to automate tasks such as provisioning and configuring
servers, and managing software deployments.

3. Ansible: an open-source automation tool that helps you automate tasks such as

provisioning and configuring servers, and deploying applications.

4. Terraform: an infrastructure as code tool that helps you automate the process of
creating, updating, and managing infrastructure resources, such as servers,
databases, and networking components.

5. Docker: a containerization platform that helps you automate the process of

building, testing, and deploying applications.

Automating tasks can save your teams time and reduce the risk of errors. It's important
to carefully plan and test your automation processes to ensure they are reliable and
effective.

CIO Action: Make sure key tools required to for automated are readily
available for development teams and are approved through internal

governance.

Page 4 of 7

Step 3: Use version control
Version control systems like Git allow you to track changes to your code and collaborate
with other developers. They also make it easier to roll back changes if something goes
wrong.

Git is a version control system that allows developers to track changes to their code and
collaborate with other developers. It is widely used in DevOps to manage code changes
and ensure that software is developed and deployed reliably.

Here are some ways you can use Git in your DevOps workflow:

1. Set up a Git repository: A Git repository is a central location where code changes
are tracked and stored. You can set up a repository on a server or use a hosted
service like GitHub, GitLab, BitBucket and Azure DevOps.

2. Collaborate with other developers: Git allows multiple developers to work on the

same codebase at the same time. Developers can use Git to track their own code
changes and merge them with the main codebase when they are ready.

3. Track code changes: Git records every change made to the codebase, allowing

you to see who made a change and when. This makes it easier to track bugs and
understand how the code has evolved over time.

4. Roll back changes: If something goes wrong with your code, you can use Git to

revert to a previous version. This can be helpful if you need to fix a bug or revert
to a stable version of your code.

Git is a powerful tool that can help your teams work more efficiently and collaborate
more effectively.

CIO Action: Mandate Chief Enterprise Architect to ensure standards
and guidelines are updated to reflect use of Git as a primary version

control mechanism.

Page 5 of 7

Step 4: Set up continuous integration and delivery
Continuous integration involves merging code changes from different developers into a
single codebase. Continuous delivery automates the process of testing and deploying
code changes. Together, these practices help you deploy code updates more quickly and
reliably.

Most organization have some processes established to manage change and releases for
their software. However, DevOps practices aim to shorten the development lifecycle
and provide standardized mechanism for large software teams to be able to work
together to deliver quality software.

Continuous integration involves merging code changes from different developers into a
single codebase as often as possible. This allows teams to identify and fix problems early
in the development process, rather than waiting until the end.

Continuous delivery takes this a step further by automating the process of testing and
deploying code changes. This allows teams to deploy code updates more quickly and
reliably, and can help reduce the risk of errors.

Here are some key benefits of using CI and CD:

1. Faster deployment: By automating the process of testing and deploying code
changes, teams can deploy updates more quickly and efficiently.

2. Improved quality: By identifying and fixing problems early in the development

process, teams can improve the quality of their code.

3. Increased collaboration: CI and CD practices encourage close collaboration
between development and operations teams, helping teams work more
efficiently and effectively.

4. Reduced risk: By automating the testing and deployment process, teams can

reduce the risk of errors and improve the reliability of their software.

There are many tools that developers from across the spectrum have to come love and
adopt. However, in Government of Canada setting, Azure Pipelines, a sub-tool of Azure
DevOps, have to come to become a leading tool for developing CICD.

Azure Pipelines is a continuous integration (CI) and continuous delivery (CD) platform
from Microsoft that allows you to build, test, and deploy your code. It is a cloud-based
service that can be used to automate the build, test, and deployment process for a wide
variety of applications, including .NET, Java, Node.js, and more.

Page 6 of 7

Azure Pipelines outperform other tools such as Google’s Cloud Build, or GitLabs mostly
because of the following features:

1. Multi-platform support: Azure Pipelines supports a wide range of platforms and
languages, including Windows, Linux, macOS, and Docker containers.

2. GitHub integration: Azure Pipelines integrates seamlessly with GitHub, allowing

you to trigger builds and deployments automatically when code changes are
pushed to your repository.

3. Build and release pipelines: Azure Pipelines allows you to create build pipelines

to automate the process of building and testing your code, and release pipelines
to automate the process of deploying your code to different environments.

4. Customization: Azure Pipelines allows you to customize your pipelines using

YAML files or the Azure Pipelines user interface.

5. Monitoring and reporting: Azure Pipelines provides real-time monitoring and
reporting tools to help you track the progress of your builds and releases.

6. Azure Pipelines can be a useful tool for automating the CI/CD process for your

applications. I hope this helps! Let me know if you have any questions about
Azure Pipelines.

7. Vast template library: There are so many different technology variations, and
building a CICD pipeline for each differs in one way or another. Azure Pipelines
come with thousands of well-organized templates that can simplify developing
of pipelines for any technology.

CIO Action: Mandate Chief Enterprise Architect to use of a CICD
Pipeline is a check-point in Architectural Governance.

Page 7 of 7

Step 5: Monitor and measure your progress
Monitoring and measuring progress is an important aspect of implementing DevOps at
scale in your organization. By tracking key performance metrics, you can identify
problems, improve your processes, and measure the success of your DevOps efforts.

Here are some ways you can monitor and measure progress when implementing
DevOps at scale:

1. Use monitoring tools: Tools like Grafana, Splunk, and New Relic can help you
monitor your systems in real-time and track key performance metrics. These
tools can alert you to problems and help you identify trends over time.

2. Track key performance indicators (KPIs): Identify the key performance indicators

(KPIs) that are most important for your organization and track them regularly.
This could include metrics such as deployment frequency, lead time for changes,
and mean time to recovery (MTTR).

3. Use dashboards and reports: Use dashboards and reports to visualize your

performance data and make it easy to track your progress. This can help you
identify trends and areas for improvement.

4. Conduct regular reviews: Schedule regular reviews to discuss your progress and

identify areas for improvement. This could be an opportunity to review your
KPIs, share best practices, and discuss any challenges you are facing.

By monitoring and measuring your progress, you can stay on track and continuously
improve your DevOps practices

CIO Action: Establish DevOps adoption as in performance
management plan for middle management of application development

teams.

Overall, implementing DevOps in IT organization is a game changer! In fact, many
organizations are experimenting with DevOps. However, the true value for the
organization can be realized by taking focused effort to accelerate adoption of DevOps-
at-Scale.

	Step 2: Automate repetitive tasks
	Step 3: Use version control
	Step 5: Monitor and measure your progress

